Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Genet ; 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280152

RESUMEN

The feather growth rate in chickens included early and late feathering. We attempted to characterize the genes and pathways associated with the feather growth rate in chickens that are not in agreement with Mendelian inheritance. Gene expression profiles in the hair follicle tissues of late-feathering cocks (LC), early-feathering cocks (EC), late-feathering hens (LH), and early-feathering hens (EH) were acquired using RNA sequencing (RNA-seq), mass spectrometry (MS), and quantitative reverse transcription PCR (qRT­PCR). A total of 188 differentially expressed genes (DEGs) were ascertained in EC vs. LC and 538 DEGs were identified in EH vs. LH. We observed that 14 up-regulated genes and 9 down-regulated genes were screened both in EC vs. LC and EH vs. LH. MS revealed that 41 and 138 differentially expressed proteins (DEPs) were screened out in EC vs. LC and EH vs. LH, respectively. Moreover, these DEGs and DEPs were enriched in multiple feather-related pathways, including JAK-STAT, MAPK, WNT, TGF-ß, and calcium signaling pathways. qRT-PCR assay showed that the expression of WNT8A was decreased in LC compared with EC, while ALK and GRM4 expression were significantly up-regulated in EH relative to LH. This study helps to elucidate the potential mechanism of the feather growth rate in chickens that do not conform to genetic law.

2.
J Hazard Mater ; 465: 133071, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38008051

RESUMEN

Thiram, an agricultural insecticide, has been demonstrated to induce tibial dyschondroplasia (TD) in avian species. Circular RNA (circRNAs), a novel class of functional biological macromolecules characterized by their distinct circular structure, play crucial roles in various biological processes and diseases. Nevertheless, the precise regulatory mechanism underlying non-coding RNA involvement in thiram-induced broiler tibial chondrodysplasia remains elusive. In this study, we established a broiler model of thiram exposure for 10 days to assess TD and obtain a ceRNA network by RNA sequencing. By analyzing the differentially expressed circRNAs network, we id entify that circ_003084 was significantly upregulated in TD cartilage. Elevated circ_003084 inhibited TD chondrocytes proliferation and differentiation in vitro but promote apoptosis. Mechanistically, circ_003084 competitively binds to miR-130c-5p and prevents miR-130c-5p to decrease the level of BMPR1A, which upregulates the expression of apoptosis genes Caspase 3, Caspase 9, Bax and Bcl2, and finally facilitates cell apoptosis. Taken together, these findings imply that circ_003084/miR-130c-5p/BMPR1A interaction regulated TD chicken chondrocyte proliferation, apoptosis, and differentiation. This is the first work to reveal the mechanism of regulation of circRNA-related ceRNA on thiram-induced TD, offering a key reference for environmental toxicology.


Asunto(s)
Fenómenos Biológicos , MicroARNs , Osteocondrodisplasias , Animales , Tiram , Osteocondrodisplasias/inducido químicamente , Osteocondrodisplasias/genética , Pollos , Condrocitos , ARN Circular/farmacología , MicroARNs/genética , Proliferación Celular
3.
Genes (Basel) ; 14(7)2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37510361

RESUMEN

Reducing abdominal fat (AF) accumulation and increasing the level of intramuscular fat (IMF) simultaneously is a major breeding goal in the poultry industry. To explore the different molecular mechanisms underlying AF and IMF, gene expression profiles in the breast muscle (BM) and AF from three chicken breeds were analyzed. A total of 4737 shared DEGs were identified between BM and AF, of which 2602 DEGs were upregulated and 2135 DEGs were downregulated in the BM groups compared with the AF groups. DEGs involved in glycerophospholipid metabolism and glycerolipid metabolism were potential regulators, resulting in the difference in lipid metabolite accumulation between IMF and AF. The PPAR signaling pathway was the most important pathway involved in tissue-specific lipid deposition. Correlation analysis showed that most representative DEGs enriched in the PPAR signaling pathway, such as FABP5, PPARG, ACOX1, and GK2, were negatively correlated with PUFA-enriched glycerophospholipid molecules. Most DEGs related to glycerophospholipid metabolism, such as GPD2, GPD1, PEMT, CRLS1, and GBGT1, were positively correlated with glycerophospholipid molecules, especially DHA- and arachidonic acid (ARA)-containing glycerophospholipid molecules. This study elucidated the molecular mechanism underlying tissue-specific lipid deposition and poultry meat quality.


Asunto(s)
Pollos , Perfilación de la Expresión Génica , Animales , Perfilación de la Expresión Génica/métodos , Pollos/genética , Pollos/metabolismo , PPAR gamma/genética , Grasa Abdominal/metabolismo , Lípidos
4.
Anim Biotechnol ; 34(7): 3144-3153, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36306258

RESUMEN

Broodiness, a maternal behavior, is accompanied by the atresia of follicles and the serious degradation of poultry reproductive performance. The comparison of follicles between brooding and laying hens is usually an ideal model for exploring the regulation mechanism of follicle atresia. In this study, we selected three brooding hens and three laying hens to collect their follicles for whole transcriptome sequencing. The results demonstrated different expression patterns between the follicles of brooding hens and laying hens. In the top 10 differentially expressed genes with the highest expression, MMP10 was relatively low expressed in the follicles of brooding hens, but other nine genes were relatively highly expressed, including LRR1, RACK1, SPECC1L, ABHD2, COL6A3, RPS17, ATRN, BIRC6, PGAM1 and SPECC1L. While miR-21-3p, miR-146a-5p, miR-142-5p and miR-1b-3p were highly expressed in the follicles of brooding hen, miR-106-5p, miR-451, miR-183, miR-7, miR-2188-5p and miR-182-5p were lowly expressed in brooding hen. In addition, we identified 124 lncRNAs specifically expressed in the follicles of brooding hens and 147 lncRNAs specifically expressed in the follicles of laying hens. Our results may provide a theoretical basis for further exploration of the molecular mechanism of broodiness in broilers.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Femenino , Animales , Pollos/genética , ARN Largo no Codificante/genética , Atresia Folicular , Perfilación de la Expresión Génica/veterinaria , MicroARNs/genética , Transcriptoma/genética
5.
Anim Biotechnol ; 34(7): 2449-2458, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35792779

RESUMEN

Granulosa cell (GC) apoptosis is the main trigger of follicular atresia. MicroRNAs (miRNAs) are 18-22 nt RNAs whose function is primarily determined by their extended seed region and are considered to be involved in the biological functions of follicular development, including follicular atresia, folliculogenesis, and oogenesis. MiR-138-5p is known to act on chicken GCs. In this study, we found that miR-138-5p was enriched in reproductive organs, such as the uterus and ovaries. To examine whether miR-138-5p could regulate the biological process of GCs, miR-138-5p was examined by transfection of cells with a mimic or inhibitor of miR-138-5p. Expression levels of caspase-3 and caspase-9 mRNA and protein were markedly increased or decreased after transfection of the mimic or inhibitor, respectively. Furthermore, following miR-138-5p inhibition, SIRT1, one of the target genes of miR-138-5p, was found to increase the mRNA, which is correlated with the increased levels of BCL2 expression, an anti-apoptotic gene in the chicken GCs. These results suggest that miR-138-5p promotes apoptosis in chicken GCs by targeting SIRT1.


Asunto(s)
Células de la Granulosa , MicroARNs , Femenino , Animales , Células de la Granulosa/metabolismo , Pollos/genética , Pollos/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Atresia Folicular/genética , MicroARNs/genética , MicroARNs/metabolismo , Apoptosis/genética , ARN Mensajero/metabolismo , Proliferación Celular/genética
6.
Genes Genomics ; 44(11): 1323-1331, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36087248

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) play an essential role in biological processes. However, the expression patterns of lncRNAs that regulate the non-Mendelian inheritance feather phenotypes remain unknown. OBJECTIVE: This study aimed to compare the expression profiles of lncRNAs in the follicles of the late-feathering cocks (LC) and late-feathering hens (LH) that followed genetic rules and the early-feathering hen (EH) and early-feathering cock (EC) that did not conform to the genetic laws. METHODS: We performed RNA sequencing and investigated the differentially expressed lncRNAs (DElncRNAs) between the early- and late-feathering chickens, which function by cis-acting or participate in the competing endogenous RNA (ceRNA) network. RESULTS: A total of 53 upregulated and 43 downregulated lncRNAs were identified in EC vs. LC, and 58 upregulated and 109 downregulated lncRNAs were identified in EH vs. LH. The target mRNAs regulated by lncRNAs in cis were enriched in the pentose phosphate pathway, TGF-ß signaling pathway and Jak-STAT signaling pathway in EC vs. LC and were associated with the TGF-ß signaling pathway, Wnt signaling pathway, p53 signaling pathway and Jak-STAT signaling pathway in EH vs. LH. In addition, the lncRNA-mediated ceRNA regulatory pathways of hair follicle formation were mainly enriched in the TGF-ß signaling pathway, Wnt signaling pathway, melanogenesis, and calcium signaling pathways. The levels of ENSGALG00000047626 were significantly higher in the late-feathering chickens than in the early-feathering chickens, which regulated the expression of SSTR2 by gga-miR-1649-5p. CONCLUSION: This study provides a novel molecular mechanism of lncRNA's response to the feather rate that does not conform to the genetic laws in chickens.


Asunto(s)
Fenómenos Biológicos , MicroARNs , ARN Largo no Codificante , Animales , Pollos/genética , Plumas/metabolismo , Femenino , Redes Reguladoras de Genes , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Análisis de Secuencia de ARN , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteína p53 Supresora de Tumor/genética , Vía de Señalización Wnt
7.
Poult Sci ; 101(11): 102122, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36167016

RESUMEN

Studies have shown that prebiotics can affect meat quality; however, the underlying mechanisms remain poorly understood. This study aimed to investigate whether prebiotics affect the flavor of chicken meat via the gut microbiome and metabolome. The gut content was collected from chickens fed with or without prebiotics (galacto-oligosaccharides or xylo-oligosaccharides) and subjected to microbiome and metabolome analyses, whereas transcriptome sequencing was performed using chicken breast. Prebiotic supplementation yielded a slight improvement that was not statistically significant in the growth and production performance of chickens. Moreover, treatment with prebiotics promoted fat synthesis and starch hydrolysis, thus increasing meat flavor by enhancing lipase and α-amylase activity in the blood of broiler chickens. The prebiotics altered the proportions of microbiota in the gut at different levels, especially microbiota in the phyla Bacteroidetes and Firmicutes, such as members of the Alistipes, Bacteroides, and Faecalibacterium genera. Furthermore, the prebiotics altered the content of cecal metabolites related to flavor substances, including 8 types of lysophosphatidylcholine (lysoPC) and 4 types of amino acid. Differentially expressed genes (DEGs) induced by prebiotics were significantly involved in fatty acid accumulation processes, such as lipolysis in adipocytes and the adipocytokine signaling pathway. Changes in gut microbiota were correlated with metabolites, for example, Bacteroidetes and Firmicutes were positively and negatively correlated with lysoPC, respectively. Finally, DEGs interacted with cecal metabolites, especially meat-flavor-related amino acids and their derivatives. The findings of this study integrated and incorporated associations among the gut microbiota, metabolites, and transcriptome, which suggests that prebiotics affect the flavor of chicken meat.


Asunto(s)
Pollos , Microbiota , Animales , Pollos/metabolismo , Transcriptoma , Oligosacáridos/metabolismo , Metaboloma , Carne/análisis , Prebióticos/análisis
8.
Poult Sci ; 101(7): 101922, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35588564

RESUMEN

It is generally accepted the gut microbiota have a profound effect on the nutrition, health, and production in poultry. To deeply understand the gut microbiota composition with the dietary fiber level in broilers, we evaluated the cecal microbiota profiles feeding on different dietary fiber level with alfalfa as additive in Dahen broilers based on 16S rRNA gene sequencing and gas chromatography. As a result, the gut microbiota diversity was greatly accelerated with the dietary fiber level. The dietary fiber stimulated the growth of many intestinal communities such as Rikenellaceae RC9 gut group, Faecalibacterium, Prevotellaceae UCG 001 and Ruminococcaceae UCG 014, and led to an altered microbial function such as Carbohydrate metabolism and Genetic information processing. Meanwhile, we found the genera Anaerofilum and Dielma were significantly correlated with the production of short chain fatty acids (SCFAs). All these results provide a reference for the broilers gut microbiota changes with different dietary fiber level. The key role of the altered microbiota with the dietary fiber may mediate beneficial effects in broiler production, which also reflect the substantial potential of dietary fiber level in poultry.


Asunto(s)
Microbioma Gastrointestinal , Animales , Pollos/genética , Fibras de la Dieta/metabolismo , Ácidos Grasos Volátiles/metabolismo , ARN Ribosómico 16S/genética
9.
J Anim Physiol Anim Nutr (Berl) ; 106(3): 575-585, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34338348

RESUMEN

Probiotics are expected to be an ideal alternative for antibiotics in the poultry industry. This study aimed to investigate the effect of Lactobacillus plantarum on growth traits, slaughter performance, serum markers and intestinal bacterial community of Daheng broilers. A total of 2400 healthy one-day-old Daheng broilers were randomly divided into 5 groups with 6 replicates per group and 40 individuals per replicate. Birds in control group were fed a basal diet, and others were fed basal diets supplemented with 105 , 106 , 107 and 108  CFU/kg Lactobacillus plantarum, respectively. It turned out that adding Lactobacillus plantarum to diet could significantly improve the serum immune performance of broilers (p < 0.05), enhance the antioxidant capacity to a certain extent (p > 0.05), but had no significant effect on growth traits and slaughter performance. Moreover, Lactobacillus plantarum could improve the diversity of intestinal bacterial community, but with the increase of addition concentration, the diversity would gradually decrease. In conclusion, Lactobacillus plantarum can be used as feed additive in broiler production, but whether it is more effective than antibiotics needs further investigation.


Asunto(s)
Lactobacillus plantarum , Probióticos , Alimentación Animal/análisis , Animales , Antibacterianos/farmacología , Biomarcadores , Pollos , Dieta/veterinaria , Probióticos/farmacología
10.
Anim Biotechnol ; 33(5): 884-896, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33342337

RESUMEN

Previous studies have shown that the feather growth rate of chicks is determined by two alleles located on the sex chromosome Z; however, in chicken production, feathering is usually not consistently controlled by the sex chromosome. To identify whether the feathering rate is related to autosomal inheritance, whole-genome resequencing was performed in eight chickens with slow- and fast-feathering rate. A total of 54,984 autosomal single nucleotide polymorphisms (SNPs) were identified, including 393 and 376 exonic SNPs in slow-feathering and fast-feathering chickens, respectively. Mutated genes were mainly involved in response to stimuli and growth and reproduction processes. Mutated genes related to slow-feathering rate were mainly involved in wingless-type MMTV integration site signaling pathway and mitogen-activated protein kinase signaling pathway, whereas mutated genes associated with fast-feathering rate were primarily enriched in autophagy, calcium signaling pathway, extracellular matrix-receptor interaction, and Focal adhesion processes. Importantly, two SNPs, involved in feather development, were found in the exonic regions of Wnt signaling genes. These results shed new light on the relationship between genetic mutation and feather growth rate from the perspective of autosomal inheritance and may have economic significance in chicken breeding.


Asunto(s)
Pollos , Polimorfismo de Nucleótido Simple , Alelos , Animales , Pollos/genética , Plumas , Proteínas Quinasas Activadas por Mitógenos/genética , Polimorfismo de Nucleótido Simple/genética
11.
Exp Cell Res ; 407(2): 112833, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34536390

RESUMEN

The yield and quality of the skeletal muscle are important economic traits in livestock and poultry production. The musculoskeletal embryonic nuclear protein 1 (MUSTN1) gene has been shown to be associated with embryonic development, postnatal growth, bone and skeletal muscle regeneration; however, its function in the skeletal muscle development of chicken remains unclear. Therefore, in this study, we observed that the expression level of MUSTN1 increased in conjunction with the proliferation of chicken skeletal muscle satellite cells (SMSCs). Knockdown of MUSTN1 in SMSCs downregulated the expression of cell proliferation genes as Pax7, CDK-2 and differentiation-relate genes including MyoD, MyoG, MyHC and MyH1B, whereas it upregulates the expression of cell apoptosis gene (Caspase-3) (P < 0.05). However, the combined analysis of CCK-8 and EdU showed that the cell vitality and EdU-positive cells of the si-MUSTN1 transfected group were significantly lower than those of the negative siRNA group (P < 0.05). In addition, the knockdown of MUSTN1 significantly increased the cell population in the G0/G1 phase and significantly decreased the cell population in the G2/M phase (P < 0.05), whereas the overexpression of MUSTN1 showed opposite effect. Taken together, our findings indicates that MUSTN1 is an important molecular factor that is responsible for regulating muscle growth and development in chickens, particularly, proliferation and differentiation of SMSCs.


Asunto(s)
Apoptosis , Diferenciación Celular , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos , Proteínas Nucleares/metabolismo , Células Satélite del Músculo Esquelético/citología , Animales , Pollos , MicroARNs , Proteínas Nucleares/genética , Células Satélite del Músculo Esquelético/metabolismo
12.
Gene Expr Patterns ; 40: 119181, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34004346

RESUMEN

BACKGROUND: The adaptation to hypoxia in high altitude areas has great research value in the field of biological sciences. Tibetan chicken has unique adaptability to high-altitude, low pressure and anoxic conditions, and served as a biological model to search for genetic diversity of hypoxia adaption. METHODS: The whole genome re-sequencing technology was conducted to investigate the genetic diversity. RESULTS: In this study, we obtained quantity genetic resource, contained 5164926 single nucleotide polymorphisms (SNPs), 237504 Insertion/Deletion (InDel), 55606 structural variation types in all chromosomes of Tibetan chicken. Moreover, 17154 non-synonymous mutations, 45763 synonymous mutations, 258 InDel mutations and 9468 structural mutations were detected in coding sequencing (CDS) region. Furthermore, SNPs occur in 591 genes, including HIF1A, VEGF, MAPK 8/9/10/11, PPARA/D/G, NOTCH2, and ABCs, which were involved in 14 hypoxia-related pathways, such as VEGF signaling pathway, MAPK signaling pathway, PPAR signaling pathway and Notch signaling pathway. Among them, 19 genes with non-synonymous SNP variation in CDS were identified. Moreover, structure variation in CDS also occurred in the mentioned above genes with SNPs. CONCLUSIONS: This study provides useful targets for clarifying the hypoxia adaptability of the domestication of chickens in Tibetan and may help breeding efforts to develop improved breeds for the highlands.


Asunto(s)
Adaptación Fisiológica , Altitud , Pollos/genética , Polimorfismo de Nucleótido Simple , Animales , Proteínas Aviares/genética , Pollos/fisiología , Mutación INDEL , Redes y Vías Metabólicas
13.
Poult Sci ; 100(3): 100932, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33652545

RESUMEN

As a ubiquitous heavy metal, cadmium (Cd) is highly toxic to various organs. However, the effects and molecular mechanism of Cd toxicity in the chicken heart remain largely unknown. The goal of our study was to investigate the cardiac injury in chickens' exposure to Cd. We detected the levels of oxidative stress-related molecules in the Cd-induced chicken heart, and assessed the histopathological changes by hematoxylin and eosin staining. RNA sequencing was performed to identify differentially expressed mRNAs between the Cd-induced group and control group. The expression of candidate genes involved in oxidative stress was certified by quantitative reverse transcription PCR. Our results showed that the expression of glutathione, peroxidase, and superoxide dismutase was significantly decreased and malondialdehyde was increased in the heart of chickens by Cd induction. The disorderly arranged cardiomyocytes, swelled and enlarged cells, partial cardiomyocyte necrosis, blurred morphological structure, and notable inflammatory cell infiltration were observed in the Cd-induced chicken heart. RNA sequencing identified 23 upregulated and 11 downregulated mRNAs in the heart tissues of the chicken in the Cd-induced group, and functional pathways indicated that they were associated with oxidative stress. Moreover, CREM, DUSP8, and ITGA11 expressions were significantly reduced, whereas LAMA1 expression was induced in heart tissue of chickens by Cd treatment. Overall, our findings revealed that oxidative stress and pathological changes in the chicken heart could be triggered by Cd. The mRNA transcriptional profiles identified differentially expressed genes in the chicken heart by Cd induction, revealing oxidative stress-related key genes and enhancing our understanding of Cd toxicity in the chicken heart.


Asunto(s)
Cadmio , Pollos , Animales , Antioxidantes , Cadmio/toxicidad , Pollos/genética , Estrés Oxidativo , Transcriptoma
14.
3 Biotech ; 10(6): 269, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32523863

RESUMEN

Hypoxia affects the physiology of cells and organisms; however, the mechanisms associated with hypoxia adaptation remain unknown in Tibetan chickens. In this study, we aimed to identify long noncoding RNAs (lncRNAs) involved in hypoxia adaptation in Tibetan chickens and Daheng broilers, to provide insights into the mechanisms underlying hypoxia induction. RNA sequencing results revealed that a total of 5504 lncRNAs and 16,779 microRNAs were differentially expressed in four Tibetan chickens and four Daheng broilers; 70 lncRNAs were up-regulated and 113 lncRNAs were down-regulated in the Tibetan chickens compared to the expression levels in the Daheng broilers. The differentially expressed lncRNAs (DElncRNAs) were enriched in the following Gene ontology terms: protein complex localization, small-molecule metabolic process, and RNA splicing. Kyoto Encyclopedia of Genes and Genomes analyses revealed that the DElncRNAs were mainly enriched in pathways that regulate cell junctions and intercellular spaces and oxygen or energy metabolism, mainly involved in hypoxic adaption. Moreover, a predicted ceRNA network with five DElncRNAs interacted with three miRNAs that acted on 42 pathways through 19 target genes. Quantitative real-time polymerase chain reaction was used to verify that the expression levels of ENSGALG00000008047, ENSGALG00000050044, and ENSGALG00000053982 were significantly lower in Tibetan chickens than in the Daheng broilers, consistent with the RNA sequencing results. We obtained lncRNA expression profiles for the heart tissue of Tibetan chickens for the first time and have provided novel data that may aid research on biological adaptation to hypoxic stress.

15.
PeerJ ; 8: e8440, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117609

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) exist widely and are involved in multiple biological processes in ducks, whereas the regulatory mechanism of miRNAs in egg laying of ducks has remained unclear. This study aims to reveal key miRNAs involved in the regulation of egg production in duck ovaries. METHODS: High-throughput sequencing was performed on four egg-type duck ovaries and four egg-meat-type duck ovaries at the start of the egg-laying stage. Quantitative reverse transcription PCR (qRT-PCR) validation was performed on differentially expressed miRNAs (DE miRNAs). Gene network of DEmiRNA-mRNA-pathway was constructed by Cytoscape. RESULTS: A total of 251 know miRNAs and 1,972 novel miRNAs were obtained from whole clean reads. Among the known miRNAs, we identified 21 DEmiRNAs, including eight down-regulated and 13 up-regulated miRNAs in egg-type ducks compared with egg-meat-type ducks. Among the novel miRNAs, we identified 70 DEmiRNAs, including 58 down-regulated and 12 up-regulated in egg-type ducks compared with egg-meat-type ducks. The expression patterns of four miRNAs were verified by qRT-PCR. The DEmiRNAs were involved in the function of response to folic acid and the pathway of valine, leucine and isoleucine degradation. Specific target genes of DEmiRNAs enrichment was found in some egg-laying regulation pathways, such as dopaminergic synapse, ovarian steroidogenesis and oocyte meiosis. The DEmiRNA-mRNA-pathway network including three DEmiRNAs, nine mRNAs and 11 pathways. apl-miR-194-5p and apl-miR-215-5p may be potential key miRNAs in regulating egg laying. CONCLUSIONS: This study provided miRNAs profiles in ducks about egg laying and establish a theoretical basis for subsequent selection or modification of duck phenotypes at the molecular level.

16.
3 Biotech ; 10(2): 38, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31988832

RESUMEN

Functional studies have revealed miRNAs play pivotal roles in ovulation and ovary development in mammalians, whereas little is known about the miRNA function in ducks. In this study, miRNA deep sequencing in the ovary tissues was carried out to obtain the miRNA profile from ovaries before oviposition (BO) and after oviposition (AO) in Jinding duck. Overall, an average of 23,128,075 and 26,020,523 reads were identified in the BO and AO samples, respectively, and 6739 miRNAs were identified from them through further mapping and analysis. Besides, 1570 miRNAs were identified as differentially expressed miRNAs compared with BO, including 493 miRNAs up-regulated and 1077 down-regulated in AO. Moreover, 2291 target genes were predicted from 443 significantly differentially expressed miRNAs. In addition, GO and KEGG pathway analysis indicated that target genes were enriched in some basic cell metabolism pathways as well as the productive pathways such as MAPK signaling pathway, gonadotropin-releasing hormone signaling pathway, TGF-beta signaling pathway which had been significantly changed. Our results helped to replenish the duck miRNA database and illustrate the potential mechanism of miRNA function in duck ovary development and reproduction process.

17.
J Anim Physiol Anim Nutr (Berl) ; 104(3): 867-875, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31957920

RESUMEN

Sichuan mountainous black-bone (SMB) chicken is a small-sized black-feathered chicken breed with low amount of meat, while Dahen (DH) chicken has a larger body size and a faster growth rate. MicroRNAs (miRNAs) are involved in various physiological processes, but their role in chicken muscle growth remains unclear. We aimed to investigate the miRNAs and pathways participating in the muscle growth of chicken. MiRNA profiles of four SMB chickens and four DH chickens were detected by small RNA sequencing. A total of 994 known miRNAs were identified, among which gga-miR-1a-3p, gga-miR-148-3p and gga-miR-133a-3p exhibited the highest enrichment in both breeds of chickens. Thirty-two miRNAs were differently expressed between SMB and DH chickens. The differently expressed miRNAs were mainly associated with fatty acid metabolism, immunity and MAPK activation-related processes. Kyoto encyclopaedia of genes and genomes (KEGG) analysis showed that miRNAs were involved in the immunity-related and MAPK signalling pathways. Moreover, miR-204 was downregulated in DH chicken compared with SMB chicken, and significantly inhibited the expression of MAP3K13, which is involved in the MAPK pathway. It was confirmed through luciferase reporter assays that miR-204 specifically inhibited the activity of MAP3K13. Our results helped demonstrate the potential molecular mechanisms of muscle growth in chickens and provide valuable information for chicken breeding.


Asunto(s)
Pollos/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , MicroARNs/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Animales , Línea Celular , Pollos/genética , Regulación hacia Abajo , Fibroblastos , Genoma , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , MicroARNs/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
18.
3 Biotech ; 9(5): 203, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31065503

RESUMEN

Coat color genetics successfully adapted and applied to different animal species, which provides a good demonstration of the concept of comparative genetics. In this study, we sequenced 945 bp fragments of melanocortin 1 receptor (MC1R) gene, 421 bp fragments of exon 1 of tyrosinase (TYR) gene and 266 bp fragments of exon 3 of agouti signaling protein (ASIP) gene for 250 individuals with five plumage color patterns. We detected a total of three SNPs (T398A, T637C, and G920C) in MC1R and built six haplotypes (H1-H6) based on the three SNPs. H5 and H6 haplotypes were mainly concentrated in white and grey chicken. And diplotypes H2H3 occurred in white feather and black-speckle feather with the same frequency. Moreover, a total of three SNPs (C47G, T120C, and T172C) in TYR were found and built six haplotypes (P1-P6) based on the three SNPs. Among them, haplotype P2, P3 and P6 were not occurred in black chicken, the diplotypes P1P6 and P4P6 were only distributed in white, gray and black-speckled feather. We only detected one SNP (T168C) in ASIP gene and found that genotype TT was advantage genotype in the different plumage color groups of chickens. Collectively, our study suggested an association between plumage color and genetic variation of MC1R, TYR and ASIP in chicken.

19.
Anim Biotechnol ; 30(3): 233-241, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30601081

RESUMEN

Objective: The goal of this study was to investigate the mechanisms of muscle growth and development of three chicken breeds. Participants: Eighteen chickens, including three different breeds with different growth speeds (White Broiler, Daheng, and Commercial Layers of Roman), were used. Methods: Total RNA from breast muscle of these chickens was subjected to a gene expression microarray. Differentially expressed genes (DEGs) were screened and functional enrichment analysis was performed using DAVID. Seven DEGs were confirmed by quantitative reverse transcription PCR. Results: Overall, 8,398 DEGs were found among the different lines. The DEGs between each two lines that were unique for a developmental stage were greater than those that were common during all stages. Functional analysis revealed that DEGs across the entire developmental process were primarily involved in positive cell proliferation, growth, cell differentiation, and developmental processes. Genes involved in muscle regulation, muscle construction, and muscle cell differentiation were upregulated in the faster-growing breed compared to the slower-growing breed. DEGs including myosin heavy chain 15 (MYH15), myozenin 2 (MYOZ2), myosin-binding protein C (MYBPC3), insulin-like growth factor 2 (IGF2), apoptosis regulator (BCL-2), AP-1 transcription factor subunit (JUN), and AP-1 transcription factor subunit (FOS) directly regulated muscle growth or were in the center of the protein-protein interaction network. Pathways, including the extracellular matrix (ECM)-receptor interaction, mitogen-activated protein kinase (MAPK) signaling pathway, and focal adhesion, were the most enriched DEGs between lines or within lines under different developmental stages. Conclusions: Genes involved in muscle construction and cell differentiation were differentially expressed among the three breeds.


Asunto(s)
Pollos/genética , Transcriptoma , Animales , Cruzamiento , Pollos/crecimiento & desarrollo , Biología Computacional , Femenino , Perfilación de la Expresión Génica/veterinaria , Desarrollo de Músculos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/veterinaria , Músculos Pectorales/crecimiento & desarrollo
20.
PLoS One ; 13(3): e0193597, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29561872

RESUMEN

BACKGROUND: Tibetan chickens living at high altitudes show specific adaptations to high-altitude conditions, but the epigenetic modifications associated with these adaptations have not been characterized. RESULTS: We investigated the genome-wide DNA methylation patterns in Tibetan chicken blood by using whole genome bisulfite sequencing. Generally, Tibetan chickens exhibited analogous methylation patterns to that of lowland chickens. A total of 3.92% of genomic cytosines were methylcytosines and 51.22% of cytosines in CG contexts were methylated, which was less than those in lowland chicken (55.69%). Moreover, the base adjacent to the methylcytosines of mCHGs in Tibetan chickens had a preference for T, which was different from that in lowland chickens. In Tibetan chickens, the methylation levels in the promoter were relatively low, while the gene body was also maintained in a hypomethylated state. DNA methylation levels in regions upstream of the transcription start site of genes were negatively correlated with the level of gene expression, and DNA methylation of gene body regions was also negatively related to gene expression. CONCLUSIONS: We generated the genome-wide DNA methylation patterns in Tibetan chickens and our results will be helpful for future epigenetic studies related to adaptations to high-altitude conditions.


Asunto(s)
Adaptación Fisiológica/genética , Altitud , Pollos/genética , Metilación de ADN , Epigenómica , Sulfitos/química , Animales , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Regiones Promotoras Genéticas , Tibet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...